

Air153C 看门狗芯片设计手册

文档名	Luat 专用看门狗芯片设计手册		
作者	Jinyi		
完成日	2023.9.21		
版本	V1.4		
文档状态	发布		

Luat 专用看门狗芯片设计手册 修改记录:

日期	作者	版本	修改说明
2023.9.5	Jinyi	1.1	新建
2023.9.12	Liufeiyang	1.3	增加工作电流说明
2023.9.18	Liufeiyang	1.4	添加各电压下看门狗复位时间

1. 概述

Air153C 看门狗芯片是合亩自主开发适用于 Cat.1 通信模块的看门狗方案。通过使用单片机烧写特定的代码,实现监控模块系统的运行状态的功能,在模块系统死机后,能在一定的时间内重启模块,以达到异常状态恢复的目的。主要应用于低功耗长期无人值守应用场景,如物流定位,安防等

2. 电气特性

	->
电压	实测输出复位信号时间
3.3V	283 秒
3.8V	240 秒
4.3V	209 秒

3. 封装信息

看门狗芯片采用标准 SOT23-6 封装, 其管脚定义以及尺寸如下图。

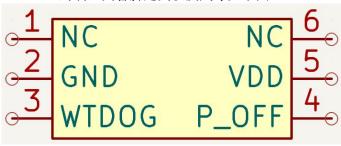
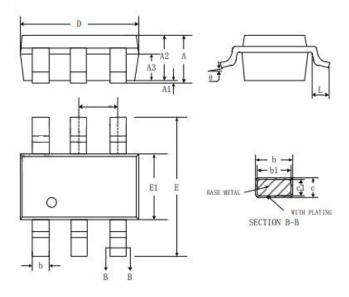



图 1

Luat 专用看门狗芯片设计手册

封装规格:

	m			Inch		
Symbol	MIN	NOM	MAX	MIN	NOR	MAX
A		-	1_ 35	-	7-	0.053
A1	0.04	-	0. 15	0.002	9-3	0.006
A2	1.00	1.10	1. 20	0. 039	0.043	0. 047
A3	0. 55	0.65	0.75	0. 022	0. 026	0. 030
b	0.30	-	0.50	0.013	::	0. 017
b1	0.30	0.40	0. 45	0.013	0.016	0. 018
С	0.08	ø = 2,	0. 22	0. 006	8 -	0. 008
c1	0. 08	0.13	0. 20	0.003	0.005	0.08
D	2. 72	2.92	3. 12	0. 107	0. 115	0. 123
E	2. 60	2.80	3. 00	0. 102	0. 110	0. 118
E1	1.40	1. 60	1. 80	0. 055	0.063	0. 071
е		0.95BSC	200		0. 037BSC	
L	0.30	<u> </u>	0. 60	0.012	_	0. 024
θ	0	-	8°	0		8°

图 2

4. 管脚详细定义

NO.	管脚名称	Туре	描述	备注
1	NC		预留管脚	保持悬空
2	GND	G	参考地	
3	WTDOG	I	喂狗管脚	高脉冲喂狗
4	P-OFF	0	复位信号输出	
5	VDD	Р	供电管脚	
6	NC	I	预留管脚	保持悬空

5. 参考原理图

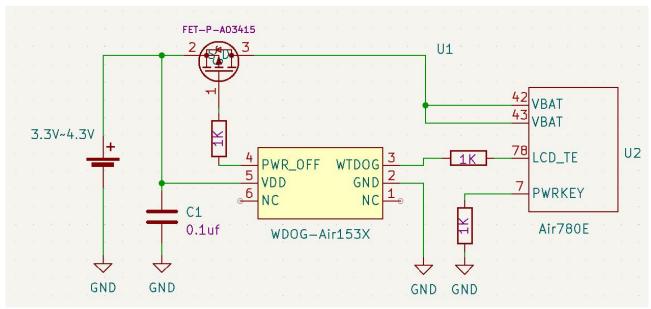


图 3 Air780 模块 (3.3V IO 电平配置) 连接参考设计

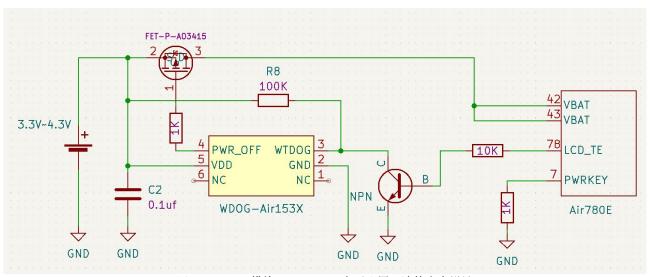
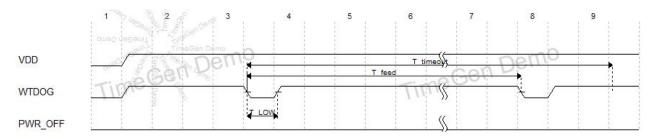
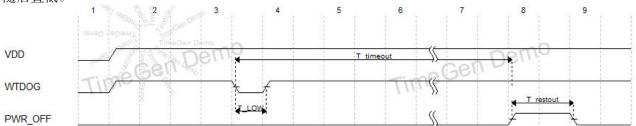
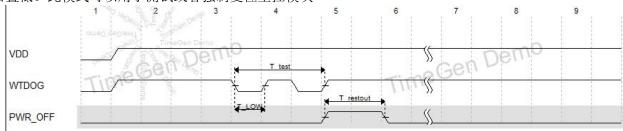



图 4 Air780 模块 (1.8V IO 电平配置) 连接参考设计


6. 正常喂狗流程

看门狗芯片检测 WTDOG 管脚的电平状态,每当检测到管脚电平由高变低时,看门狗芯片会重置内部超时计时器 $T_{timeout}$ (默认 $T_{timeout}$ = 240s)。如图 5,两个喂狗信号的间隔 $T_{timeout}$ 期, $T_{timeout}$ 并存 $T_{timeout}$ 并存 $T_{timeout}$ 为 $T_{timeout}$ 并存 $T_{timeout}$ 为 $T_{timeout}$ 有 $T_{timeout}$


7. 喂狗超时流程

当看门狗芯片在 $T_{timeout}$ 时间内未能检测出 WTDOG 管脚有低脉冲喂狗信号时,就会进入重启模块的操作,看门狗芯片 PWR_OFF 管脚会拉高 $T_{timeout}$ 时间(默认 $T_{timeout}$ = 500ms)进入复位重启动作,随后置低。

1. 强制复位流程

当模块看门狗芯片在 T_{test} (T_{test} (T_{test})时间内连续收到 2 个喂狗信号,模看门狗芯片会立即进行复位动作:看门狗芯片 PWR_OFF 管脚会拉高 T_{restout} 时间(默认 T_{restout} = 500ms)进入复位重启动作,随后置低。此模式可以用于测试或者强制复位主控模块

