

Air8000_V2.0 开发板使用说明_V1.0.1

文档名	Air8000_V2.0 开发板使用说明		
修改日期	2025-08-19		
版本	1.0.1		
其它说明	更多信息在 www.Air8000.cn		

目 录

概述	3
开发板配置	3
注意事项:	5
管脚定义	6
外设分布	10
使用说明	11
供电	11
开机关机	15
固件升级	15
摄像头使用注意事项	17

概述

Air8000 整机开发板开发板是合宙通信推出的基于 Air8000 模组所开发的,包含电源, SIM 卡, LCD、Camera、USB、485、CAN、以太网天线,按键等必要功能的最小硬件系统, 以方便用户在设计前期对 Air8000 模块进行性能评估,功能调试,软件开发等用途。

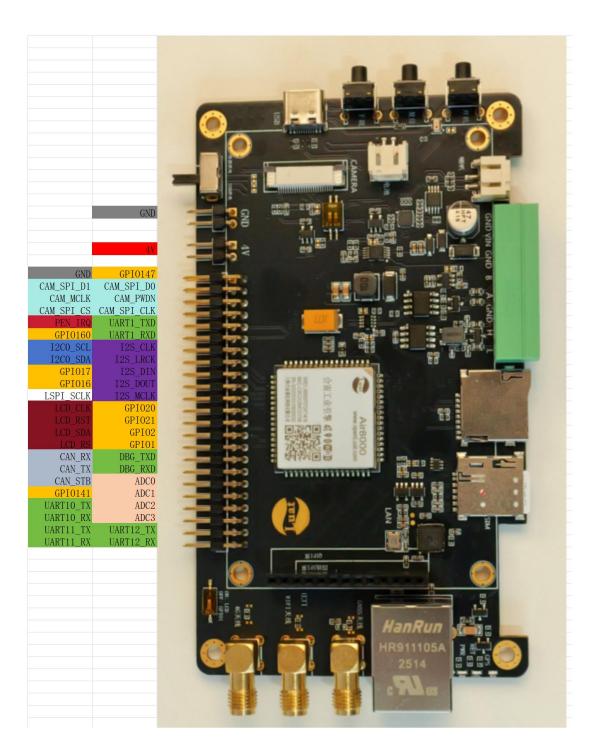
开发板配置

- 4G 天线,WIFI 天线,GNSS 天线
- 一个下载/调试串口,三个通用串口
- IO 口默认电平 3.3V (IO 电平无法配置,目前软件不支持)
- 支持 USB 5V 直接供电
- 1 个 SIM 卡座 (自弹式)
- 1 个 TF 卡座
- 支持 LCD 屏/SPI 接口/QSPI 接口, 480*320 分辨率
- 支持摄像头, SPI 接口, 30W 像素
- 1个电源指示灯,1个网络状态指示灯
- 2路 SPI 接口
- 1路 I2S 接口
- 1 个喇叭接口
- 3 个按键 (开机按键,下载模式按键,复位按键)
- 1个开关 (USB/外部供电切换开关)
- 4路 ADC 接口

- 1路 I2C 接口
- 1 个以太网接口
- 1个CAN 接口
- 1个电池接口
- 更多信息 www.Air8000.cn

注意事项:

- 1. 第一次使用时,由于开发板可能比较老,需要升级 WIFI 固件:
- 2. 第一次烧录固件的时候,有可能版本的分区不一致,刷固件的时候选择



3. 因为整机开发板的功能多,所以 I2CO 被复用多处,使用 I2C 相关的功能需要打开其他 的 I2C 器件电源,需要如下操作:

复用功能	GPIO 编号	代码控制
内部 G-sensor	24	gpio.setup(24, 1, gpio.PULLUP)
ES8311 音频编解码	164	gpio.setup(164, 1, gpio.PULLUP)
Camer 控制	147	gpio.setup(147, 1, gpio.PULLUP)
LCD 触摸屏的触摸 IC	141	gpio.setup(141, 1, gpio.PULLUP)

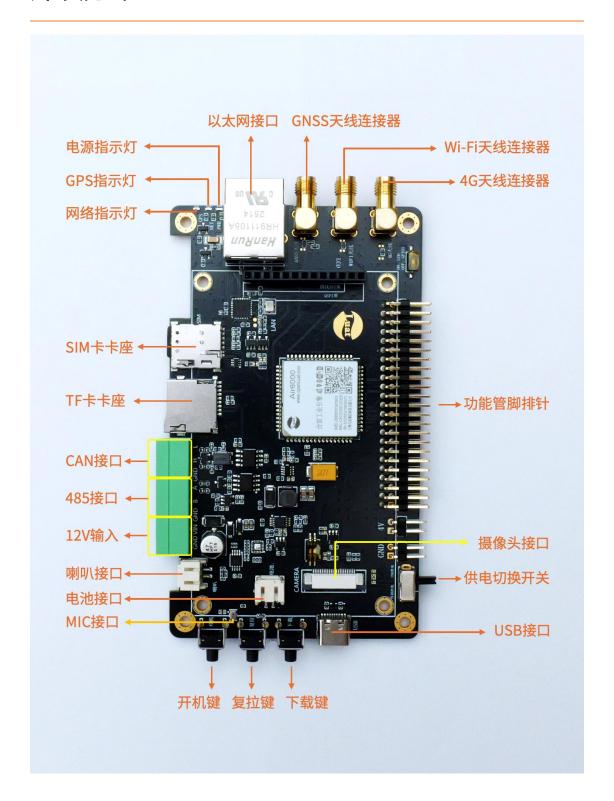
管脚定义

注意:以上 PinOut 图示,对应的是 V2.0 开发板,版本号在板子背面丝印上可查阅。

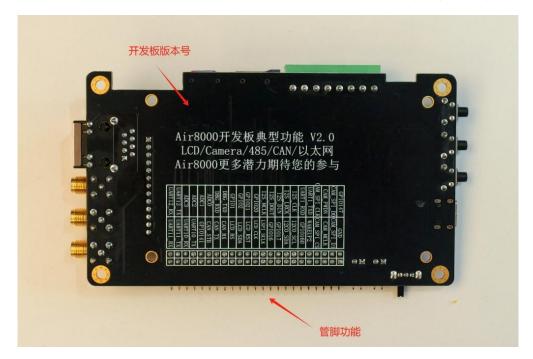
管脚功能说明:

模块				
管脚	名称	描述	复位功能	备注
编号				
	CAM_SPI_D1			
98	CAM_MCLK			
66	CAM_SPI_CS			
78	WAKEUP2	中断输入		仅用作中断输入,休眠可唤醒 引擎
96	GPIO160	通用 GPIO		DC 电平: 3.3V I0 电平无法配置,目前软件 不支持
80	I2C0_SCL	I2C 总线数据信号		DC 电平: 3.3V
81	I2C0_SDA	I2C 总线时钟信号		Air8000, Air8000G, 内部复用 Gsensor, 地址为 0x27, 外部设 备地址不可重复
82	GPIO17	通用 GPIO		休眠不可保持输出,休眠不可 唤醒引擎
83	GPIO16	通用 GPIO		休眠不可保持输出,休眠不可 唤醒引擎
25	LSPI_SCLK	LCD 接口时钟信号		
25	LCD_CLK	LCD 接口时钟信号		在 SPI 接口中称为 SCK (Serial Clock),数据在时 钟的上升沿或下降沿被采 样,确保发送端和接收端的 时序一 致。
27	LCD_RST	LCD 接口复位信号		上电时可能需要拉低一段时间再释放,或通过程序控制 复位以解决显示异常问题。
28	LCD_SDA	LCD 接口数据通道 1		
29	LCD_RS	LCD 接口寄存器选 择,作为 QSPI LCD 时候作为数据通道 2		区分发送的是命令还是数据。
37	CAN_RX	CAN 总线数据接收 信号		DC 电平: 3.3V
36	CAN_TX	CAN 总线数据发送		DC 电平: 3.3V

模块 管脚 编号	名称	描述	复位功能	备注
		信号		
35	CAN_STB	CAN 总线接口模式 选择管脚		
55	GPIO141	通用 GPIO		
57	UART10_TX	串口 10 数据发送		作为 WIFI 日志输出口,不可用作 luatos 开发
58	UART10_RX	串口 10 数据接收		作为 WIFI 日志输出口,不可用作 luatos 开发
49	UART11_TX	串口 11 数据发送		DC 电平:3.3V 不用则悬空
48	UART11_RX	串口 11 数据接收		DC 电平:3.3V 不用则悬空
53	GPIO147	通用 GPIO		IO 电平无法配置,目前软件 不支持
	CAM_SPI_D0			
	CAM_PWDN CAM_SPI_CLK			
16	UART1_TXD	串口 1 数据发送		DC 电平:3.3V 不用则悬空
17	UART1_RXD	串口 1 数据接收		DC 电平:3.3V 不用则悬空
18	I2S_CLK	数字语音位时钟信号		DC 电平: 3.3V
19	I2S_LRCK	数字语音左右通道切 换信号		DC 电平: 3.3V
20	I2S_DIN	数字语音输入信号		DC 电平: 3.3V
21	I2S_DOUT I2S_MCLK	数字语音输出信号 数字语音时钟信号		DC 电平: 3.3V
23	GPIO20	支持输出,输入		DC 电平: 3.3V 休眠可保持输入输出, 休眠可唤醒引擎
24	GPIO21	支持输出,输入		DC 电平: 3.3V 休眠可保持输入输出, 休眠可 唤醒引擎
30	GPIO2	作为 QSPI LCD 时候作为数据通道 3	OneWire	SPI LCD 不需使用 此管脚
31	GPIO1	作为 QSPI LCD 时	PWM0	SPI LCD 不需使用



模块 管脚 编号	名称	描述	复位功能	备注
		候作为数据通道 4		此管脚
46 47	DBG_TXD DBG_RXD	调试串口数据发送 调试串口数据接收		调试日志输出接口,不建议 做通用串口用
75	ADC0	模数转换 ADC 通道 0		量程 0~1.6V 若超量程需要外部电阻分压
68	ADC1	模数转换 ADC 通道 1		量程 0~1.6V 若超量程需要外部电阻分压
42	ADC2	模数转换 ADC 通道 2		量程 0~1.6V 若超量程需要外部电阻分压
87	ADC3	模数转换 ADC 通道 3		量程 0~1.6V 若超量程需要外部电阻分压
60	UART12_TX	串口 12 数据发送		DC 电平:3.3V 不用则悬空
59	UART12_RX	串口 12 数据接收		DC 电平:3.3V 不用则悬空
	GND	参考地		



外设分布

顶视图

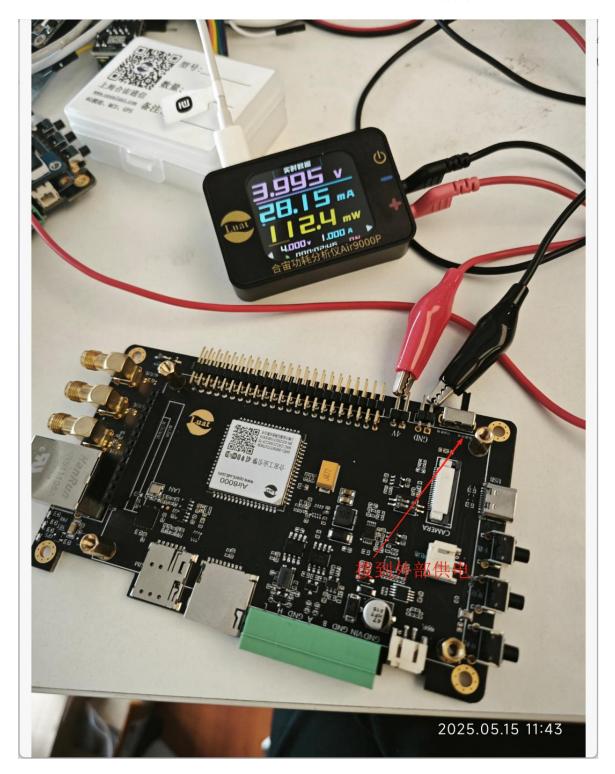
底视图

使用说明

供电

通过 USB 接口直接供电

使用 type-C 数据线一端连接开发板 UBS 接口,另一端连接电脑 USB 接口,通过电脑的 USB 接口直接给开发板提供 5V 供电。当开发板有外部供电时,电源指示灯会亮起,表示开 发板已上电。


请注意

- 1. 推荐使用 PC 的 USB3.0 接口给开发板供电
- 2. 需要将供电选择开关拨到 USB 供电侧
- 3. 需要长按开机键 1S 以上开机
- 4. VIN 接口处也可以供电,注意 VIN 的供电范围为 5-12V

通过外接电源给开发板供电

参考下图图示,在开发板对应位置接入正负极即可对开发板进行供电。当网络指示灯正 常闪烁时表示已经开机。供电电压范围在 3.3V-4.3V 之间,建议供电电压为 3.8V。以防对 PC 设备造成损坏。

请注意

- 1. 4V 供电管脚供电电压不能超过 4.3V, 否则会有烧毁开发板的风险
- 2. Air8000 低功耗测试推荐使用合宙功耗分析仪 Air9000 或 Air9000P,合宙官方淘宝店

Luat.taobao.com 有售

如您需要评估 Air8000 的功耗表现,可以由此管脚进行供电,并按照如下步骤操作:

- 1, 断开 USB 供电;
- 2, 供电切换开关保持在左侧, 即标识"USB 供电"一侧;
- 3,给 4V 插针处接外部供电的正极,给 GND 插针处接外部供电的负极;

注意! 供电范围是 3.3V--4.3V;

4,将供电切换开关拨至右侧,即标识"外部供电"一侧,此时即刻由外部电源给 Air 8000 供 电;

注意! 推荐使用合宙功耗分析仪 Air9000 系列仪表进行功耗测试;

5,特别提醒!外部供电时,此电源只给 Air8000 模组供电,外设全部为断开状态,也就是 任何外设,比如摄像头、LCD等都无法工作,只有模组本身和SIM卡正常;

开机关机

● 用按键开关机

Air8000 开发板在满足供电条件之后,长按开机键(1.5s)以上就可以触发开机。此时可以控制网络指示灯,常亮表示开发板已经正常开机。

开机后,如果再次长按开机键(1.5S)以上触发关机流程,观察网络指示灯,常灭表示开发板已经正常关机。

● 上电自动开机

想让开发板上电同时自动开机,这种方式也能实现,但是需要调整开发板上的电阻。 注意在开机按键旁边有一颗空贴的电阻位置,在这个位置上手动焊接一个 0402 0 欧姆 电阻即可,会将 Air8000 开发板的 POWKEY 信号拉低,也就实现了开发板上电自动开机。

请注意

1. 改成上电开机后,开机按键不再有任何作用。上电自动开机操作不推荐,仅限于有硬件基础开发者调试使用

固件升级

Air8000 开发板固件升级可以直接通过 USB 口进行,使用 Luatools 工具进行固件升级更新。按照以下步骤:

- 1. 首先 USB 连接 PC, 保持上电但不开机状态。
- 2. PC 上打开 Luatools 工具,选择好要更新的固件,(具体操作见 <u>Luatools 下载和</u>详细使用,本文仅着重描述开发板的操作)

上海合宙通信科技有限公司 docs.openLuat.com 低功耗,易开发,用合宙工业引擎。15

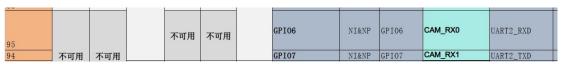
3. 按住下载模式按键(boot 键)不放,同时再长按开机键开机,这时开发板会进入下载模式,Luatools下载进度条会开始跑,这时可以松开 boot 按键。直到工具提示下载完成。

如果未能成功进入下载模式,而是进入正常开模式,这时可以按住 boot 键,再短按复位按键,让开发板重启,重新进入下载模式。

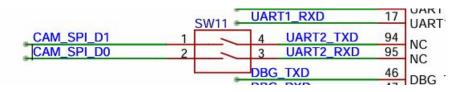
说明:

Luatools 下载和详细使用

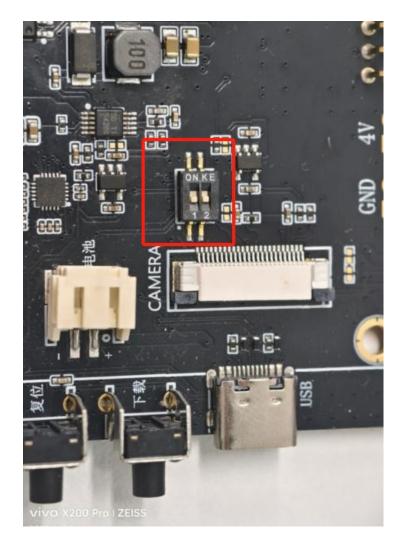
- 4. 如何判断有没有进入下载模式:可以通过 PC 端的设备管理器中虚拟出来的 USB 端口数量来判断:
 - a) 正常开机模式:



b) 下载模式:



摄像头使用注意事项


由于 94 管脚和 95 管脚可以分别复用成 uart2 和 camera 的数据管脚,如下图所示:

并且在 Air8000 模组内部 UART2 接的是 GPS 芯片,所以在开发板设计的时候会有一个拨码开关来控制是使用 UART2 还是使用 camera 功能,拨码开关拨到 on 是接通 canera 功能。

更多详细

详见:

Docs.openLuat.com

www.Air8000.cn

更多关于针对 Air8000 进行 LuatOS 二次开发的详细文档说明都在合宙 Docs 网 站,并且持续更新迭代中.